Table 2. Selected geometric parameters (Å, °)

C1-C10	1.546 (6)	C14-C15	1.552 (7)
$C_{1}-C_{2}^{2}$	1.553 (8)	C15-C16	1.542 (7)
C2-C3	1.513 (7)	C16-C17	1.512 (10)
C3-C4	1.526 (8)	$C_{17} - C_{20}$	1.508 (7)
C4-C28	1 535 (7)	$C_{20}-C_{21}$	1 534 (9)
C4-C29	1 537 (11)	$C_{20}^{20} - C_{22}^{22}$	1 536 (7)
C4 - C5	1.560 (7)	$C^{22} - C^{23}$	1 520 (0)
C5-C6	1.532 (7)	C_{3} C_{4}	1 490 (9)
C5-C10	1.532 (7)	C_{24} - C_{25}	1 477 (0)
C5-C10 C6-C7	1.541(5)	$C_{24} = C_{25}$	1.483 (12)
C7_C8	1.505 (7)	C25C27	1.511 (0)
$C_{8} = C_{18}$	1.570 (5)	$C_{23} = C_{27}$	1 / 88 (0)
C_{0}	1.547 (0)	$C_{31} = C_{32}$	1.400 (7)
C_{8}	1.506 (7)		1.215(0)
$C_0 = C_{14}$	1.574 (8)	02 - C17	1.445 (7)
C9-C10	1.540 (0)	03 - 013	1.402 (7)
C_{10}	1.373(7)	03-01	1.403 (7)
	1.540(7)	04-031	1.342 (0)
C12 - C12	1.525 (8)	04-023	1.409 (0)
	1.495 (8)	05-024	1.448 (8)
	1.4/9(5)	05-025	1.403 (/)
	1.516(8)	06-031	1.198 (8)
CI4—C30	1.54/(/)		
C10-C1-C2	113.1 (3)	C17-C13-C14	110.9 (5)
C3-C2-C1	116.1 (4)	C12-C13-C14	118.2 (4)
01-C3-C2	120.7 (5)	C13-C14-C30	108.9 (5)
O1-C3-C4	121.8 (5)	C13-C14-C15	103.5 (3)
C2-C3-C4	117.2 (4)	C13-C14-C8	109.0 (4)
C3-C4-C28	111.0 (4)	C30-C14-C15	109.8 (4)
C3-C4-C29	105.3 (5)	C30-C14-C8	112.3 (3)
C3-C4-C5	108.8 (4)	C15-C14-C8	113.0 (5)
C28-C4-C29	108.1 (5)	C16-C15-C14	107.9 (5)
C28-C4-C5	114.8 (5)	C17-C16-C15	105.1 (4)
C29-C4-C5	108.3 (4)	O3-C17-C13	59.7 (3)
C6-C5-C10	110.5 (5)	O3-C17-C20	113.2 (5)
C6-C5-C4	114.2 (4)	O3-C17-C16	110.9 (4)
C10-C5-C4	114.8 (4)	C13-C17-C20	125.9 (5)
C7-C6-C5	108.7 (3)	C13-C17-C16	108.6 (4)
C6-C7-C8	114.6 (5)	C20-C17-C16	121.7 (4)
C18-C8-C9	110.1 (4)	C17-C20-C21	111.5 (5)
C18-C8-C7	108.4 (5)	C17-C20-C22	109.6 (4)
C18-C8-C14	109.8 (3)	C21-C20-C22	111.8 (4)
C9-C8-C7	111.0 (3)	C23-C22-C20	112.5 (4)
C9-C8-C14	109.1 (5)	O4-C23-C24	105.8 (5)
C7-C8-C14	108.3 (4)	O4-C23-C22	108.2 (4)
C11-C9-C8	109.8 (3)	C24-C23-C22	110.3 (4)
C11-C9-C10	114.3 (4)	05-C24-C25	60.0 (4)
C8-C9-C10	116.8 (5)	$05 - C^{24} - C^{23}$	118 1 (4)
C19-C10-C5	110.4 (4)	$C_{25} - C_{24} - C_{23}$	124.0 (5)
C19-C10-C1	108.2 (4)	$05 - C^{2}5 - C^{2}4$	59.0 (4)
C19-C10-C9	107.0 (5)	$05 - C^{2}5 - C^{2}6$	114.6 (5)
C5-C10-C1	106.5 (4)	05-C25-C27	112.8 (6)
C5-C10-C9	110.6 (4)	$C^{24}-C^{25}-C^{26}$	1231(6)
C1-C10-C9	114.2 (3)	$C_{24} - C_{25} - C_{27}$	116.4 (6)
02-C11-C12	107.4 (5)	$C_{26} - C_{25} - C_{27}$	116.7 (6)
02	112.5 (3)	06-031-04	1234(4)
C12-C11-C9	112.9 (4)	06-C31-C32	125.3 (5)
C13-C12-C11	114.0 (6)	04 - C31 - C32	111.3 (5)
03-C13-C17	59.6 (3)	C17-03-C13	60.8 (3)
O3-C13-C12	115.5 (5)	$C_{31} - O_{4} - C_{23}$	116.2 (5)
03-C13-C14	111.0 (4)	$C_{24} - 05 - C_{25}$	61.0 (4)
C17-C13-C12	126.9 (4)		51.0 (1)

Initial structure analysis was performed with a continuous process connected to the data collection using the fully automatic procedure *FASE* (Yamaguchi, 1993). Data collection and cell refinement were performed using *AFD* (Rigaku Corporation, 1985*a*); data reduction was by *FASE*. The structure was solved by direct methods, included in *FASE*, and with *SAP185* (Yao, Zheng, Qian, Han, Gu & Fan, 1985), and refined using *RCRYS-TAN* (Rigaku Corporation, 1985*b*). Molecular graphics were obtained using *ACV* (Stardent Computer Inc., 1990) and the material for publication was prepared with *XPACK* (Yamaguchi, 1987).

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71803 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1083]

References

- Fukuyama, Y., Pei-Wu, G., Rei, W., Yamada, T. & Nakagawa, K. (1988). Plant Med. 54, 445-447.
- Ida, Y., Satoh, Y., Nakajima, Y., Yamaguchi, K. & Shoji, J. (1989). 109th Ann. Meet. Jpn. Soc. Pharm. Sci. Nagoya, p. 207. Abstract.
- Murata, T., Shinohara, M. & Miyamoto, M. (1970). Chem. Pharm. Bull. 18, 1369-1384.
- Nakajima, Y., Mikoshiba, K., Ida, Y. & Shoji, J. (1984). 104th Ann. Meet. Jpn. Soc. Pharm. Sci. Sendai, p. 151. Abstract.
- Rigaku Corporation (1985a). AFD. Diffractometer Control Program System. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1985b). RCRYSTAN. X-ray Analysis Program System. Rigaku Corporation, Tokyo, Japan.
- Stardent Computer Inc. (1990). ACV. Application Chemistry Viewer. Stardent Computer Inc., Mewton, Massachusetts, USA.
- Yamaguchi, K. (1987). XPACK. Programs for X-ray Parameters Report. Showa Univ., Tokyo, Japan.
- Yamaguchi, K. (1993). Chem. Pharm. Bull. 41, 424-429
- Yao, J.-X., Zheng, C.-D., Qian., J.-Z., Han, F.-S., Gu, Y.-X. & Fan, H.-F. (1985). SAP185. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.

Acta Cryst. (1994). C50, 738-740

A Kaurane Derivative Isolated from Alisma orientale

KENTARO YAMAGUCHI, YOSHITERU IDA, YOHKO SATOH, YOSHIJIROH NAKAJIMA AND JUNZO SHOJI

School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

(Received 10 August 1993; accepted 2 November 1993)

Abstract

The structure of a new diterpene, $C_{20}H_{30}O_2$, m.p. 452-453 K, $[\alpha]_D - 28.4^\circ$ (c = 1.0, acetone), isolated from fresh rhizomes of *Alisma orientale* (Alismataceae) was established to be 16(R)-(-)-kaurane-2,12-dione by means of Xray crystallographic analysis and its optical rotation. The *A*, *B* and *C* rings have chair conformations. The puckering parameter of the bridging *D* ring, the angle between the planes C(14)-C(13)-C(16)-C(15) and C(15)-C(8)-C(14), is 39.4 (7)°.

Comment

During phytochemical investigation of fresh rhizomes of Alisma orientale (Mikoshiba, Nakajima, Ida & Shoji, 1983; Nakajima, Mikoshiba, Ida & Shoji, 1984; Ida, Satoh, Nakajima, Yamaguchi & Shoji, 1989), the source material of a Chinese crude drug 'Zexie' (Alismatis rhizome) used for diabetes and swelling (diuretics), a new diterpene was isolated together with four sesquiterpenes and 21 triterpenoids. In order to establish its structure, the X-ray analysis was undertaken. The structure determined here as ent-kauren-2,12-dione, (I), is very rare, having ke-

tones as the only functional group. This is the first isolation of a diterpene from the family of this plant, whereas kauranes (Fiagbe, Karlsson, Pilotti & Berg, 1979; Karle, 1972) have been found mainly in plants of the compositae, labiatae, polypodiaceae (genus Pteris) families.

Fig. 1. Displacement-ellipsoid plot of the title molecule. Ellipsoids are drawn at the 50% probability level with isotropic H-atom parameters represented by spheres of arbitarary size.

Experimental

The title compound was isolated from a crude sample of the Chinese drug 'Zexie'.

Crystal data

$C_{20}H_{30}O_2$	Cu $K\alpha$ radiation	C1C2
$M_r = 302.46$	$\lambda = 1.5418 \text{ Å}$	C1-C10

Orthorhombic
$P2_12_12_1$
a = 11.252 (1) Å
<i>b</i> = 19.435 (1) Å
c = 7.880(1) Å
V = 1723.4 (4) Å ³
Z = 4
$D_x = 1.166 \text{ Mg m}^{-3}$

Data collection

Rigaku AFC-5 diffractometer $\omega/2\theta$ scans [width (1.3 + $0.14\tan\theta)^{\circ}$ (in ω); speed $16^{\circ} \min^{-1}$ Absorption correction: none 1557 measured reflections 1502 independent reflections 1029 observed reflections $[F > 3\sigma(F)]$

Refinement

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

C14

C15

C16 C17 C18 C19

C20 01

02

Refinement on F^2 R(F) = 0.061 $wR(F^2) = 0.060$ S = 1.701029 reflections 318 parameters All H-atom parameters refined Calculated weights $w = 1/[\sigma^2(F) + 0.02F^2]$ Cell parameters from 20 reflections $\theta = 29.0 - 30.5^{\circ}$ $\mu = 0.531 \text{ mm}^{-1}$ T = 297 KPrism $0.55 \times 0.25 \times 0.05$ mm Clear

- $\theta_{\rm max} = 60^{\circ}$ $h = 0 \rightarrow 12$ $k = 0 \rightarrow 21$ $l = 0 \rightarrow 8$ 3 standard reflections monitored every 150 reflections intensity variation: < 3%
- $(\Delta/\sigma)_{\rm max} = 0.14$ $\Delta \rho_{\rm max}$ = 0.48 e Å⁻³ $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\rm cq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

x	у	z	$U_{ m eq}$
0.3411 (6)	0.1813 (3)	-0.1585 (11)	0.044 (2)
0.3775 (7)	0.2490 (4)	-0.2370 (9)	0.050 (2)
0.4641 (8)	0.2434 (4)	0.3798 (11)	0.057 (3)
0.5770 (7)	0.2042 (3)	-0.3284 (9)	0.048 (2)
0.5432 (6)	0.1374 (3)	-0.2344 (9)	0.035 (2)
0.6495 (7)	0.0934 (4)	-0.1789 (11)	0.046 (2)
0.6092 (8)	0.0206 (4)	-0.1337 (12)	0.047 (3)
0.5174 (6)	0.0186 (3)	0.0057 (9)	0.039 (2)
0.4140 (6)	0.0693 (3)	-0.0336 (9)	0.037 (2)
0.4522 (6)	0.1441 (3)	-0.0876 (9)	0.037 (2)
0.3202 (6)	0.0682 (4)	0.1097 (10)	0.043 (2)
0.3696 (7)	0.0580 (4)	0.2863 (10)	0.046 (2)
0.4692 (7)	0.0063 (4)	0.2992 (10)	0.049 (2)
0.5701 (6)	0.0309 (4)	0.1847 (11)	0.045 (2)
0.4687 (8)	-0.0546 (3)	0.0289 (11)	0.049 (2)
0.4320 (7)	-0.0625 (4)	0.2166 (12)	0.056 (3)
0.4898 (11)	-0.1243 (5)	0.3076 (18)	0.081 (4)
0.6587 (10)	0.2527 (5)	-0.2247 (13)	0.068 (3)
0.6439 (11)	0.1876 (6)	-0.4944 (13)	0.071 (4)
0.4979 (8)	0.1869 (3)	0.0655 (10)	0.041 (2)
0.3381 (6)	0.3036 (2)	-0.1833 (9)	0.075 (2)
0.3289 (5)	0.0876 (2)	0.4105 (7)	0.068 (2)

Table 2. Selected geometric parameters (Å, °)

1.509(11)	00 07	1.550(10)
C1-C10 1.548 (10)	C9-C11	1.546 (10)

$C_{20}H_{30}O_2$

1.493 (11)	C9-C10	1.574 (9)
1.536 (12)	C10-C20	1.553 (10)
1.541 (10)	C11-C12	1.512 (11)
1.543 (13)	C12-C13	1.509 (11)
1.550 (13)	C13-C14	1.527 (11)
1.534 (10)	C13C16	1.545 (11)
1.550 (10)	C15-C16	1.543 (13)
1.528 (11)	C16-C17	1.543 (14)
1.508 (12)	O1-C2	1.224 (10)
1.537 (10)	O2C12	1.224 (10)
1.548 (11)		
109.7 (6)	C11-C9-C8	110.9 (6)
124.0 (7)	C11-C9-C10	113.4 (5)
121.0 (7)	C8-C9-C10	115.8 (5)
115.0 (7)	C1-C10-C5	107.7 (5)
112.1 (6)	C1-C10-C20	107.3 (5)
109.9 (6)	C1-C10-C9	108.0 (5)
106.5 (7)	C5-C10-C20	113.9 (6)
109.1 (7)	C5-C10-C9	107.7 (5)
110.6 (7)	C20C10C9	112.0 (5)
113.9 (6)	C12C11C9	115.0 (6)
106.5 (8)	O2-C12-C13	122.4 (7)
114.5 (6)	O2-C12-C11	122.5 (7)
110.4 (6)	C13-C12-C11	115.0 (6)
116.8 (5)	C12-C13-C14	107.6 (6)
110.6 (6)	C12-C13-C16	110.3 (6)
113.4 (7)	C14-C13-C16	102.9 (6)
110.8 (6)	C13C14C8	101.9 (6)
113.4 (6)	C8-C15-C16	107.5 (6)
110.5 (6)	C17-C16-C15	114.2 (8)
99.9 (6)	C17-C16-C13	111.4 (8)
110.1 (6)	C15-C16-C13	104.2 (6)
111.8 (5)		
	1.493 (11) 1.536 (12) 1.541 (10) 1.543 (13) 1.550 (13) 1.550 (10) 1.528 (11) 1.508 (12) 1.57 (10) 1.548 (11) 109.7 (6) 124.0 (7) 121.0 (7) 112.1 (6) 109.9 (6) 106.5 (7) 109.1 (7) 113.9 (6) 106.5 (8) 114.5 (6) 110.6 (6) 113.4 (7) 110.8 (6) 113.4 (6) 110.5 (6) 99.9 (6) 110.1 (6) 110.1 (6) 111.8 (5)	1.493 (11) C9-C10 1.536 (12) C10-C20 1.541 (10) C11-C12 1.543 (13) C12-C13 1.550 (10) C13-C14 1.534 (10) C13-C16 1.550 (10) C15-C16 1.528 (11) C16-C17 1.508 (12) O1-C2 1.537 (10) O2-C12 1.537 (10) O2-C10 121.0 (7) C8-C9-C10 121.0 (7) C1-C10-C5 112.1 (6) C1-C10-C20 109.7 (6) C1-C10-C20 109.7 (6) C1-C10-C20 109.9 (6) C1-C10-C20 109.9 (6) C1-C10-C9 106.5 (7) C5-C10-C9 106.5 (7) C5-C10-C9 106.5 (8) O2-C12-C13 114.5 (6) O2-C12-C13 114.5 (6) O2-C12-C11 110.4 (6) C13-C14-C13 113.4 (7) C14-C13-C16 113.4 (6) C13-C14-C8 113.4 (6) C13-C16-C13 110.5 (6) C17-C16-C13 110.1 (6) C15-C16-C13 110.1 (6) </td

Initial structure analysis was performed with a continuous process connected to the data collection using the fully automatic procedure *FASE* (Yamaguchi, 1993). Data collection and cell refinement were performed using *AFD* (Rigaku Corporation, 1985a); data reduction was by *FASE*. The structure was solved by direct methods, included in *FASE*, and with *SAPI*85 (Yao, Zheng, Qian, Han, Gu & Fan, 1985), and refined using *RCRYS-TAN* (Rigaku Corporation, 1985b). Molecular graphics were obtained using *ACV* (Stardent Computer Inc., 1990) and the material for publication was prepared with *XPACK* (Yamaguchi, 1987).

Lists of structure factors, anisotropic displacement parameters and Hatom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71804 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1084]

References

- Fiagbe, N., Karlsson, B., Pilotti, A. M. & Berg, J. E. (1979). Acta Cryst. B35, 236-239.
- Ida, Y., Satoh, Y., Nakajima, Y., Yamaguchi, K. & Shoji, J. (1989). 109th Ann. Meet. Jpn. Soc. Pharm. Sci. Nagoya, p. 207. Abstract.
- Karle, I. L. (1972). Acta Cryst, B28, 585-589.
- Mikoshiba, K., Nakajima, Y., Ida, Y. & Shoji, J. (1983). 30th Ann. Meet. Jpn. Soc. Pharmacogn. Tokushima, p. 43. Abstract.
- Nakajima, Y., Mikoshiba, K., Ida, Y. & Shoji, J. (1984). 104th Ann. Meet. Jpn. Soc. Pharm. Sci. Sendai, p. 151. Abstract.
- Rigaku Corporation (1985a). AFD. Diffractometer Control Program System. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1985b). RCRYSTAN. X-ray Analysis Program System. Rigaku Corporation, Tokyo, Japan.
- Stardent Computer Inc. (1990). ACV. Application Chemistry Viewer. Stardent Computer Inc., Mewton, Massachusetts, USA.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

- Yamaguchi, K. (1993). Chem. Pharm. Bull. 41, 424-429
- Yao, J.-X., Zheng, C.-D., Qian, J.-Z., Han, F.-S., Gu, Y.-X. & Fan, H.-F. (1985). SAPI85. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China.

Acta Cryst. (1994). C50, 740-742

Triphenylphosphoranylideneammonium Azide, [Ph₃P=NH₂][N₃]

WILLIAM CLEGG* AND CHRISTINE BLEASDALE

Department of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, England

(Received 16 August 1993; accepted 11 October 1993)

Abstract

The structure consists of $[Ph_3P=NH_2]^+$ cations and $[N_3]^-$ anions, which are linked together into polymeric chains by hydrogen bonding between the cationic NH_2 groups and the terminal N atoms of the anions. The P=N bond has a high degree of double-bond character and is shorter than most comparable bonds in other structures. The azide anion is essentially linear and symmetrical.

Comment

Staudinger & Hauser (1921) prepared the title compound by treatment of triphenylphosphine with hydrogen azide in solution in ethanol-benzene. They formulated it as $Ph_3P=NH.N_3H$ and although they investigated a number of its reactions, they were unable to deduce the precise chemical constitution.

The title compound, (I), is, in fact, the azide salt of the $[Ph_3P=NH_2]^+$ cation (Fig. 1). The azide anion is essentially linear and symmetrical. The N—N bond lengths (mean 1.164 Å) are well within the range (1.136-1.188 Å) reported for linear azides of a variety of organic cations (Kimura, Anan, Koike & Shiro, 1989; Bracuti & Extine, 1990; Woning, Daniels & Verkade, 1990; Lex & Linke, 1976; Christe, Wilson, Bau & Bunte, 1992).

The cation has a pseudo-tetrahedral P atom and a trigonal planar N atom (at least within the accuracy to which the two H atoms have been placed), consistent with partial P=N double bonding. The Ph₃P=N unit is